125 research outputs found

    The Influence of the Time Equation on Remote Sensing Data Interpretation

    Get PDF
    The interpretation of optical Earth observation data (remote sensing data from satellites) requires knowledge of the exact geographic position of each pixel as well as the exact local acquisition time. But these parameters are not available in each case. If a satellite has a sun-synchronous orbit, equator crossing time (ECT) can be used to determine the local crossing time (LCT) and its corresponding solar zenith distance. Relation between local equator crossing time (LECT) and LCT is given by orbit geometry. The calculation is based on ECT of satellite. The method of actual ECT determination for different satellites on basis of the two-line-elements (TLE), available for their full lifetime period and with help of orbit prediction package is well known. For land surface temperature (LST) studies mean solar conditions are commonly used in the relation between ECT given in Coordinated Universal Time (UTC) and LECT given in hours, thus neglecting the difference between mean and real Sun time (MST, RST). Its difference is described by the equation of time (ET). Of particular importance is the variation of LECT during the year within about ±15 minutes. This is in each case the variation of LECT of a satellite, including satellites with stable orbit as LANDSAT (L8 around 10:05 a.m.) or ENVISAT (around 10:00 a.m.). In case of NOAA satellites the variation of LECT is overlaid by a long-term orbital drift. Ignatov et al. (2004) developed a method to describe the drift-based variation of LECT that can be viewed as a formal mathematical approximation of a periodic function with one or two Fourier terms. But, nevertheless, ET is not included in actual studies of LST. Our paper aims to demonstrate the possible influence of equation of time on simple examples of data interpretation, e.g. NDVI

    Application4MaritimeSecurity

    Get PDF
    The near real time framework development, as well as the service chain implementation is done by the Maritime Security Lab at the Ground Station in Neustrelitz, part of the German Remote Sensing Data Center (DFD). The algorithms for SAR image analysis are being developed by the Maritime Security Lab in Bremen, part of the Remote Sensing Technology Institute (IMF). IMF and DFD are institutes of the Earth Observation Center (EOC), which is part of the German Aerospace Center (DLR)

    Identification of SAR Detected Targets on Sea in Near Real Time Applications for Maritime Surveillance

    Get PDF
    Remote sensing technologies are widely used in maritime surveillance applications. Nowadays, spaceborne Synthetic Aperture Radar (SAR) systems provide outstanding capabilities for target detection at sea for large areas independently from the weather conditions. The generated value added target detection product is composed by complementary information from the Automatic Identification System (AIS). Resulting information layers provides a more reliable picture on the maritime situation awareness. This paper describes the approach of SAR-AIS data fusion and its visualization means developed for Near Real Time (NRT) Applications for Maritime Situational Awareness by the Maritime Security Lab at the Ground Station in Neustrelitz, part DLR’s German Remote Sensing Data Center (DFD). Presented implementation is based on combination of many open source geospatial libraries and frameworks (e.g., GDAL/OGR, Geoserver, PostgresSQL) and shows their effectiveness in the context of complex automated data processing in the frame of NRT requirements

    Usability of Medium Resolution Optical Remote Sensing Images for Anomaly Detection in Maritime Surveillance Applications

    Get PDF
    As part of the project "Intelligent Assistance and Analysis Systems for Early Detection and Management of Maritime Hazardous Situations” (IntelliMar) an anomaly detection application was developed and validated based on the analysis of Automatic Identification System (AIS) and Earth Observation (EO) remote sensing data. For this task optical Earth observation medium resolution satellite data from Landsat-8 and Sentinel-2 were used and their suitability in the context of object detection was evaluated. In a two-step approach, deep-learning methods were used for object detection and classification, and the derived results were then applied to a set of anomaly rules for anomaly report generation and transmission

    Landsat-8 Sea Ice Classification Using Deep Neural Networks

    Get PDF
    Abstract: Knowing the location and type of sea ice is essential for safe navigation and route op-timization in ice-covered areas. In this study, we developed a deep neural network (DNN) for pixel-based ice Stage of Development classification for the Baltic Sea using Landsat-8 optical sat-ellite imagery to provide up-to-date ice information for Near-Real-Time maritime applications. In order to train the network, we labeled the ice regions shown in the Landsat-8 imagery with classes from the German Federal Maritime and Hydrographic Agency (BSH) ice charts. These charts are routinely produced and distributed by the BSH Sea Ice Department. The compiled data set for the Baltic Sea region consists of 164 ice charts from 2014 to 2021 and contains ice types classified by the Stage of Development. Landsat-8 level 1 (L1b) images that could be overlaid with the available BSH ice charts based on the time of acquisition were downloaded from the United States Geological Survey (USGS) global archive and indexed in a data cube for better handling. The input variables of the DNN are the individual spectral bands: aerosol coastal, blue, green, red and near-infrared (NIR) out of the Operational Land Imager (OLI) sensor. The bands were selected based on the reflectance and emission properties of sea ice. The output val-ues are 4 ice classes of Stage of Development and Free Ice. The results obtained show significant improvements compared to the available BSH ice charts when moving from polygons to pixels, preserving the original classes. The classification model has an accuracy of 87.5% based on the test data set excluded from the training and validation process. Using optical imagery can there-fore add value to maritime safety and navigation in ice- infested waters by high resolution and real-time availability. Furthermore, the obtained results can be extended to other optical satel-lite imagery such as Sentinel-2. Our approach is promising for automated Near-Real-Time (NRT) services, which can be deployed and integrated at a later stage at the German Aerospace Center (DLR) ground station in Neustrelitz

    Near Real Time Applications to retrieve Wind Products for Maritime Situational Awareness

    Get PDF
    High resolution remote sensing Synthetic Aperture Radar (SAR) data from TerraSAR-X/Tandem-X Sentinel and RADARSAT 2 satellites are used to determine and monitor the sea surface in near real time and all weather and illumination conditions. The radar backscatter of the sea surface is determined by the sea surface roughness caused by the wind field and the sea state. An Automatic Wind Detection Processing System Workflow as implemented in DLR-Neustrelitz (DFD-NBS) is described

    Sea State from High Resolution Satellite-borne Synthetic Aperture Radar Imagery

    Get PDF
    The Sea Sate Processor (SSP) was developed for fully automatic processing of high-resolution Synthetic Aperture Radar (SAR) data from TerraSAR-X (TS-X) satellites and implemented into the processing chain for Near Real Time (NRT) services in the DLR Ground Station "Neustrelitz". The NRT chain was organised and tested to provide the processed data to the German Weather Service (DWD) in order to validate the new coastal forecast model CWAM (Coastal WAve Model) in the German Bight of the North Sea with 900 m horizontal resolution. The NRT test-runs, wherein the processed TS-X data were transferred to DWD and then incorporated into forecast products reach the best performance about 10 min for delivery of processed TS-X data to DWD server after scene acquisition. To do this, a new empirical algorithm XWAVE_C (C = coastal) for estimation of significant wave height from X-band satellite-borne SAR data has been designed for coastal applications. The algorithm is based on the spectral analysis of subscenes and the empirical model function yields an estimation of integrated sea state parameters directly from SAR image spectra without transformation into wave spectra. To provide the raster coverage analysis, the SSP intends three steps of recognising and removing the influence of non-sea-state-produced signals in the Wadden Sea areas such as ships, buoys, dry sandbars as well as nonlinear SAR image distortions produced by e.g. short and breaking waves. For the validation, more than 150 TS-X StripMap scene sequences with a coverage of ~30 km × 300 km across the German Bight since 2013 were analysed and compared with in situ Buoy measurements from 6 different locations. On this basis, the SSP autonomous processing of TS-X Stripmap images has been confirmed to have a high accuracy with an error RMSE = 25 cm for the total significant wave height
    corecore